Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface.
نویسندگان
چکیده
We have examined the role of thiol-disulfide exchange reactions during the penetration of cells by Sindbis virus. The protein-protein association that form the rigid icosahedral lattice of the Sindbis virus envelope have been shown to be stabilized by disulfide bridges, and reduction of these critical disulfide bridges during cell penetration may be the mechanism by which the rigid protein lattice is disrupted prior to fusion (R. Anthony and D. T. Brown, J. Virol. 65:1187-1194, 1991; R. Anthony, A. Paredes, and D. T. Brown, Virology 190:330-336, 1992). Reduction of disulfide bridges occurs at near neutral pHs via thiol-disulfide exchange reactions, and these reactions can be blocked by covalent modification of the thiol involved. In this study, the effects of the reducing agent 2-mercaptoethanol on Sindbis virus-mediated cell-cell fusion from without and the effects of the membrane-impermeable thiol-alkylating reagent 5,5'-dithiobis(2-nitrobenzoic acid) on Sindbis virus penetration were determined. The presence of exogenous reducing agent was found to induce fusion from without under conditions unfavorable to both typical Sindbis virus-mediated fusion from without and cysteine-mediated thiol-disulfide exchange reactions. In addition, the thiol-alkylating reagent was found to inhibit Sindbis virus entry when present during infection. These results are consistent with a model for Sindbis virus entry in which reduction of critical disulfide bridges at the cell surface disrupts the rigid protein-protein associations of the envelope, allowing membrane fusion and release of the viral genome into the cell.
منابع مشابه
Glycosaminoglycans and protein disulfide isomerase-mediated reduction of HIV Env.
Conformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and ...
متن کاملSindbis virus glycoprotein E1 is divided into two discrete domains at amino acid 129 by disulfide bridge connections.
The E1 membrane glycoprotein of Sindbis virus contains structural and functional domains, which are conformationally dependent on the presence of intramolecular disulfide bridges (B. A. Abell and D. T. Brown, J. Virol. 67:5496-5501, 1993; R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have examined the disulfide bonds in E1 and have determined that the E1 membran...
متن کاملInfection of cells by Sindbis virus at low temperature.
Sindbis virus, which belongs to the family Togaviridae genus Alphavirus infects a variety of vertebrate and invertebrate cells. The initial steps of Sindbis virus infection involve attachment, penetration and uncoating. Two different pathways of infection have been proposed for Alphaviruses. One proposed mechanism involves receptor mediated virion endocytosis followed by membrane fusion trigger...
متن کاملFluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells
Sindbis virus (SINV) is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged) SINV and found that the presence of the FP-tag (mCherry) affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined...
متن کاملLow-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes.
There is controversy as to whether the cell entry mechanism of Sindbis virus (SIN) involves direct fusion of the viral envelope with the plasma membrane at neutral pH or uptake by receptor-mediated endocytosis and subsequent low-pH-induced fusion from within acidic endosomes. Here, we studied the membrane fusion activity of SIN in a liposomal model system. Fusion was followed fluorometrically b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 67 9 شماره
صفحات -
تاریخ انتشار 1993